Corticotropin-releasing factor mediated muscle atonia in pons and medulla.

نویسندگان

  • Y Y Lai
  • J M Siegel
چکیده

The dorsolateral pontine inhibitory area (PIA) and medial medullary reticular formation (MMRF) have been found to mediate the muscle atonia of REM sleep. Our previous studies have shown that acetylcholine (ACh) microinjection in the PIA and in the nucleus paramedianus of the medial medulla produces muscle atonia. Glutamate microinjection in both PIA and nucleus magnocellularis (NMC) of the medial medulla also produces muscle atonia. Since immunohistochemical studies have identified corticotropin-releasing factor (CRF) as a potential dorsolateral pontine and NMC transmitter, the present study was undertaken to determine whether this transmitter could produce suppression of muscle tone. Experiments were performed on unanesthetized, decerebrated cats. CRF was microinjected into points in the PIA and NMC at which electrical stimulation produced bilateral inhibition of muscle tone. We found that CRF produced a dose-dependent muscle tone suppression. At 10 nM concentration, the latency and duration of muscle inhibition produced by CRF injection were comparable with those of L-glutamate, at 18.8 s and 4.1 min, respectively. This CRF-induced muscle inhibition was blocked by the CRF antagonist, alpha-helical [Glu27]corticotropin-releasing factor 9-41 (CRF 9-41). Microinjection of CRF and non-NMDA agonists, kainate and quisqualate, into the same sites in PIA and NMC produced muscle atonia. Pontine sites at which CRF injection induces atonia are identical to those at which acetylcholine microinjection produces atonia. These results indicate that CRF may interact with glutamate and acetylcholine in the generation of muscle atonia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active medullary control of atonia in week-old rats.

Muscle atonia is a central feature of adult REM sleep which has recently been demonstrated to be a component of sleep in rats as young as 2 days of age (P2). The neural generation of atonia, which depends on mesopontine and medullary structures, is not fully understood in adults and has never been described in infants. In the present experiments we used electrical stimulation in decerebrated pu...

متن کامل

Atonia-related regions in the rodent pons and medulla.

Electrical stimulation of circumscribed areas of the pontine and medullary reticular formation inhibits muscle tone in cats. In this report, we present an analysis of the anatomical distribution of atonia-inducing stimulation sites in the brain stem of the rat. Muscle atonia could be elicited by electrical stimulation of the nuclei reticularis pontis oralis and caudalis in the pons as well as t...

متن کامل

Brainstem neurons responsible for postural, masseter or pharyngeal muscle atonia during paradoxical sleep in freely-moving cats.

In this mini review, we summarize our findings regarding the brainstem neurons responsible for the postural, masseter, or pharyngeal muscle atonia observed during paradoxical sleep (PS) in freely moving cats. Both the pons and medulla contain neurons showing tonic activation selective to PS and atonia, referred to as PS/atonia-on-neurons. The PS/atonia-on neurons, characterized by their most sl...

متن کامل

CHOLINERGIC STIMULATION of the rostral part of the pontine reticular formation induces rapid-eye-movement (REM) sleep with atonia in intact animals, and lesions at this pontine site cause REM sleep without atonia.1,2,3 REM sleep without atonia

pontine reticular formation induces rapid-eye-movement (REM) sleep with atonia in intact animals, and lesions at this pontine site cause REM sleep without atonia.1,2,3 REM sleep without atonia is also induced by lesions in the medial medulla.4,5 In the decerebrate cat, both chemical and electrical stimulation delivered to the pontine inhibitory regions, as well as to portions of the medial medu...

متن کامل

Muscle tone regulation during REM sleep: neural circuitry and clinical significance.

Rapid eye movement (REM) sleep is a distinct behavioral state characterized by an activated cortical and hippocampal electroencephalogram (EEG) and concurrent muscle atonia. Research conducted over the past 50 years has revealed the neuronal circuits responsible for the generation and maintenance of REM sleep, as well as the pathways involved in generating the cardinal signs of REM sleep such a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 575 1  شماره 

صفحات  -

تاریخ انتشار 1992